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Abstract 

A general joint probability distribution between struc- 
ture factors is derived and is expressed as an exponen- 
tial of the free energy for a system of interacting 
atoms. The free energy is an explicit function of the 
atomic densities and the interatomic potentials. In 
the limit of infinite temperature, energy effects are 
unimportant and the probability distribution becomes 
identical to those derived by Hauptman & Karle [ The 
Solution of the Phase Problem. I. The Centrosymmetric 
Crystal. (1953). ACA Monogr. Wilmington: The 
Letter Shop; Acta Cryst. (1959), 12, 93-97] and 
Bricogne [Acta Cryst. (1984), A40, 410-445]. 

I. Introduction 

The principle of maximum entropy (PME) has been 
applied to crystallographic problems from a statistical 
inference viewpoint by Bricogne (1984) and Gull, 
Livesey & Sivia (1987). Navaza (1985, 1986) has 
shown that the type of constraint used with the PME 
determines the final form of the maximum-entropy 
functional. Recently, Bryan (1988) has also incor- 
porated correlations into the entropy expression. 
However, no one has attempted to incorporate 
stereochemistry in a general way, although Wilson 
(1981) has considered the possibility. This paper 
shows that if chemical information can be represented 
as potential functions, then it can be applied with the 
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PME to yield the Helmholtz free energy as a function 
of the structure factors. Moreover, the free energy lS 
shown to be, within a normalization factor, the log 
of a structure-factor joint probability distribution 
(j.p.d.). Phase determination can therefore be con- 
sidered as a constrained free-energy minimization. 

In calculating structure-factor j.p.d.s the crystal is 
usually modelled as a sample from an ensemble of 
structures in which all possible atomic configurations 
are equally represented. This assumption is free from 
stereochemical bias and is routinely used to solve 
small-molecule crystal structures. For larger struc- 
tures, however, current procedures do not work well. 
From a theoretical point of view, one possible alterna- 
tive for improving the success rate is to eliminate 
from the ensemble those configurations that are 
stereochemically impossible. 

Energetic constraints yield preferred bond lengths 
and angles which alter the number of 'reasonably 
probable' configurations. Since the information 
theoretic entropy is a measure of reasonably probable 
configurations* and is equivalent to the entropy 
defined in statistical mechanics [up to a multiplicative 
Boltzmann constant kB (Jaynes 1957)], it is clear that 
a physical approach offers an opportunity for ex- 
tending the principle of maximum entropy within 
crystallography. 

* And this measure is dependent only on a reasonable definition 
for 'reasonably probable' (Jaynes, 1965). 
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The main result in this paper is the explicit 
expression of the free energy as a function of single- 
atom density functionals (equation 3). That this is 
possible is a consequence of the Hohenberg-Kohen 
theorem, as shown by Evans (1979) (see also Parr, 
1983). The derivation of (3) employs the grand 
canonical distribution which assumes that only the 
average number of each atomic type is known. [See 
Parr & Weitao (1989, p. 64) for a proof of the 
Hohenberg-Kohen theorem for the grand canonical 
ensemble.] Fortunately, the probability distribution 
based on a fixed number of atoms can be regained 
by a saddle-point integration in the manner of Darwin 
& Fowler (see Zubarev, 1974, p. 126). 

The arguments in this paper are based on the well 
known cluster expansion and result in a j.p.d, between 
structure factors that does not depend on the assump- 
tion of independent identically distributed atoms. It 
should be noted that most of the necessary statistical 
mechanics concepts pre-date the proofs of direct- 
method j.p.d.s by a number of years. 

2. Free energy 

Standard equilibrium probability distributions such 
as the grand canonical distribution are constrained 
maximum-entropy (ME) distributions (McQuarrie, 
1973, p. 37; Katz, 1967). The entropy functional S -  
-kB(log P), evaluated at the ME distribution, is a 
function of the constraint values (C~,) (Jaynes, 1957) 
and has the form 

k~Smax[(C1), (C2), . . . ]  

=logZ[A, ,A2 , . . . ] -A , (Ca) -A2(C2) - . . .  (1) 

where Z is the partition function. The (C~) are 
usually constrained averages of the constants of 
motion while the h~, are their corresponding Lagrange 
multipliers. The values of h~ are given by the solutions 
to the equations O logZ/OA~=(C~,), / z = l , 2 , . . .  
(Jaynes, 1957). These conditions make (1) a Legendre 
transform between log Z[A~, . . . ]  and 
Smax[O log Z/OA~,...] = S m a x [ ( C 1 ) , . ,  .] (McQuarrie, 
1973, p. 15) and so, in principle, log Z and Sma, 
contain essentially the same information. Because 
OSmax/O(C~)=-kBk~,, the derivatives of Sma x and 
log Z are complementary [the meaning of this term 
is more fully discussed by Mandelbrot (1989)] and 
their hessians are, within a multiplicative factor, 
inverses of one another; i.e. 021ogZ/O,~vOh,= 
-kB[OESmax/cg(Cv)O(Ct~)] -1. When the constraints 
(C,)  are taken to be number densities, (N,~(x))- = 
p~(x), then the hessian of the entropy is called the 
direct-correlation function and its inverse relation- 
ship to the hessian of log Z is known as the Ornstein- 
Zernike equation (Zubarev, 1974, p. 290). In many 
statistical mechanics textbooks this equation is used 
to define the direct-correlation function. By compar- 

ing (1) and its derivatives to thermodynamically 
derived Maxwell's relations, an identification can be 
set up between variables so that if, for example, 
(C1) = (E) is the average energy of the system, then 
it follows that A1 = -f l  - -1 /kBT where T is the tem- 
perature. Similarly, the Lagrange multiplier of the 
average number of atoms of type a, (N,),  is related 
to the chemical potential (see Mohling, 1982). Free 
energies, such as the Helmholtz free energy, A, are 
related to one another and to the entropy via 
Legendre transforms, 

-flA[fl, (N~), (C,), . . . ]  

= k~'Smax[(E), (N~), (C,) , . . . ] - f l (E) .  (2) 
The ellipsis make explicit the possibility that A still 
depends on other unspecified averages. Free-energy 
minimization can be used to determine the most prob- 
able values for the arguments. For example, at con- 
stant temperature and average number density, 
minimizing A with respect to an unknown average 
(Ci) is equivalent to maximizing Sma x. This implies 
that OA/O(C,)=O ~ OSma,/O(Ci)=O and hence that 
the corresponding Lagrange multiplier h~ must be 
zero. The Lagrange multipliers are functions of the 
average values via the ME equations (Bricogne, 1984) 
so that the intersection of the hypersurface A~((E), 
(N~), ( C i ) , . . . ) = 0  determines the possible equili- 
brium points for (C~). The idea of maximizing the 
maximum entropy as a phase-determination method 
is discussed by Navaza (1985). These arguments indi- 
cate that there is no essential difference to maximizing 
the entropy Sma× with respect to an unknown and 
minimizing a corresponding free energy (free energies 
must be minimized because of the negative - f l ) .  
Preference of one free energy over another is based 
solely on those parameters which are of interest (tem- 
perature or energy, chemical potential or density etc.). 
Although the Lagrange multipliers appear explicitly, 
(1) represents the entropy as a function of the expecta- 
tion values only. A major aim of this paper will be to 
determine the chemical potential explicitly as a func- 
tion of the temperature and number densities and 
thus to remove any reference to it from the free-energy 
expression (2). This will be done in § 4 where it will 
be used to prove the following relationship: for M 
different types of atom in a crystal unit cell of volume 
V, the free energy A, under the condition that the 
average density for each atomic type is known, is 
given by 

M 

- f lA  = E I 8 ~ p ~ , ( x )  dx 
p.=! V 

M 

- E I P~(x) log[p,,(x)/p°(x)] dx 
/.t=l V 

+G[P,,P~,...,PM] (3) 
where t~, = 1 - l o g  (A3/V)  and A,~ is the de Broglie 
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Table 1. Table o f  low-order cluster integrals f o r  F 

Vertex  In t e g ra nd  D ia g ra m 

r~,.,}(x, ¥) Y)O,o(Y) . . . .  = p •  ( x ) fu . ,o  ( x  ' o 

0 0 Z 0 / ~  F~I.HI(X, y, Z) = p~,(x)f~,~(X, y)p~(y)f~,o(X, )p,o(z)f~,(y, Z) 
2 k 

v 

+ 0 0 0 , " , ,  p~,(x)p ~(y)p,o(z)f~.v,o(x, y, z) ," • 
.,: . . . .  : :  

+o o o !!~ pu(x)p~(y)p~(z)f~(y, z)f~,~o. (x, y, z) .,. 

v 

0 0 0 + p~.(x)p~(y)p~(z)f.~(x, z)f~,~,o (x, y, z) ,,: . . . .  :: 

+o 0 o /? p~,(x)o ~(y)p,o(z)f~.~(x, y)f~.~.. (x, y, z) ~ ,.,: •~ 

+ o  0 o /i? P~'(x)p~(Y)P°'(z)f~"°(x'Y)f~'~'°(x'Y'Z) . ""•~ 

v 

+ 0 0 0 X p.(x)p~(y)p~(z)f~(x, y)f~,o (x, z)f~,~,o( , y, z) 
~ ta 

0 X 0 0 ,",~, p.(  )p~(y)p~,(zlf~,o,(x. y)f~,o(x, z)f~,~.o(x, y, z) .,:! + 
...:.\ 

0 0 0 + p~,(x)p~(y)po,(z)f~,~(x, y)f.,o (x, z)f,,,,(y, z)f~,,.,o (x, y, z) 

where f~,~(x, y) = exp [-/3 U~,~(x, y)] - 1 and p°(x)  = exp [-/3A~,(x)]. The function U defines the interatomic potential energy and A~, (x) a position-dependent 
external field or, equivalently, a position-dependent chemical potential. Higher-order irreducible diagrams when there is no three-atom interaction are 
given in Hoover & DeRocco (1962). 

wavelength for atoms of type /z equal to 
(27rf lh2/r%) 1/2. The functions log p ° are external 
position-dependent chemical potentials. The func- 
tional Fz[~] is the excess free energy given by 

r ~ [ p ,  , . . . , p M  ] 

o•  

= Y. Z [[I n~ !]-' 
n = 2  {f i}  

x ~ dx , . . .dxnP~t(x , ) . . .m~(xn)r~}(x , , . . . ,xn)  
v 

(4) 

where {fi} is the set of integers (nt, n = , . . . ,  nM) that 
satisfy Y~ M ~,=, n~ = n. The coefficients F~} are tem- 
perature-dependent irreducible cluster integrals 
(Morita & Hiroike, 1961), first introduced by Husimi 
(1950), which vanish if the interaction potentials 
vanish. Some of the lowest-order terms are given 
explicitly in Table 1. In quantum field theory they 
are equivalent to 'proper vertices' or one-particle- 

irreducible (1PI) Green functions (Rivers, 1987, p. 
34). The connection between statistical mechanics 
and quantum field theories, particularly in the use of 
cluster expansions, has a long history (see Landsman 
& Weert, 1987; de Dominicis & Martin, 1964). 

3. Definitions 

The starting point for the proof of (3) is the generating 
functional for the Green functions: 

ZI3[j, , j2 ,  . . . , jM ] 

A 

N~,(x) is the number density operator equal to 
d*(x)d(x) where a* and d are atomic creation and 

A 

annihilation operators respectively. ((A)) represents 
the statistical average of the operator A with respect 
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to the Hamiltonian ~e: 

y~ ( gr[  exp [-/3~],41 ~F,~) (6) 
o~ 

where the summation a is over a complete set of 
states. This can be derived directly from the PME 
under the assumption of known average energy and 
particle density (Katz, 1967). The j~(x) are source 
terms for atoms of type/z and the derivatives of log Z 
with respect to these functions at the origingives the 
sourceless Green functions ((Nu,(xl)N~2(x2)... 
N,,,, (x, ))). Equation (5) can also be interpreted as 
the characteristic function of the probability distribu- 
tion of atomic densities. With j , (x )  purely complex, 
(5) is a Fourier transform of the unnormalized proba- 
bility distribution exp [_fl~e]. Taking a to be the 
quantum numbers {n,~(x)}, complete over the Fock 

A 
space domain of the operator ~,  so that 
N~(x)[~F{,,Ax)})=n~,(x)]gt{,~,(x)}) and n~(x) specifies 

the particle number at point x, then (5) can be 
expressed as 

Z~tjl,.,. .,jM]= ~ Y. S d x l . . ,  dx,  
n = 0  {fi} v 

x exp [ j~ , (x l ) ] . . .  exp [JuM (x,)] 

X Z f a } ( x l , . . .  ,x , ) .  (7) 
/3 The density matrices, Z{a}, are given explicitly by 

z f , ,  ..... , M } ( x , , . . . , x , )  

= £ O * ( x l , . . . ,  x ,)  exp [ - / 3 ~ , ] O p ( X l , . . . ,  x,)  
P 

(8) 

where p is over a complete set of wavefunctions for 
an n-particle system composed of n~ of type 1, nz of 
type 2 etc. The Hamiltonian ~,, is the sum of kinetic 
energies and position-dependent potential energies 
(see § 3.1) of n particles with external chemical poten- 

0 tials h~,(x) [equal to log p~,(x) of (3)]. Since Z~,}(~) 
in (8) does not depend on the type of function Op, 
only that they form a complete set, then symmetrized 
or anti-symmetrized Bloch plane-wave products, nor- 
malized to crystal volume V, can be used: 

- O p  = [1-I n~, !] -u2 Z ( +  1 ) / " - .  • ( + 1 )  ~M 
¢'1, #2 . . . . .  #,M 

x q~p,(Xl) • • • q~e.(x, )  (9)  

where P---- (Pl ,  P2, • • • ,  Pn) and q~p(x) = 
V -u2 exp {ipx/h}. The plus sign corresponds to Bose 
statistics and the minus sign to Fermi statistics. To 
evaluate (8) the following approximation is made 

E -~[I-In,,!]-IvN/(zcrh)3Nj...SdPl...dpN 
Pl ,  P2, -" ,Pn 

(10) 

where the factorials allow for the fact that a permuta- 
tion of identical particles does not change the physical 
state. This transformation excludes the possibilRy of 

Bose-gas degeneracy where there may be a macro- 
scopically large number of particles in the ground 
state. The error introduced by the transformation (10) 
is equal to the difference between Y. exp ( - a n  2) and 
c t l / 2 ~ e x p  ( - x  2) d x = a  -1/2 which is small only if a 
is small. This error can be rectified by replacing a-1/2 
with f (a)  for some suitable function f. The function 
can be absorbed into the density expression, introduc- 
ing no effective error, as long as only the classical 
terms are included. In this case the 6 u of (3) changes 
to 1 - 1 o g f [ ( h 3 / V ) - 2 ] .  

So far, care has been taken to keep the development 
quantum mechanically sound because the final appli- 
cation will be to systems with a large number of atoms 
in a restricted cell volume. However, in the thermody- 
namic limit of N ~ o o ,  the cell volume V will also 
approach infinity because real crystal densities, 
especially those of organic molecules, differ by less 
than an order of magnitude [for most organic 
molecules the densities range from 0.9 to 1.7 g ml -~ 
(Stout & Jensen, 1989)] and hence N~ V-~ p remains 
a finite constant. Keeping only the most important 
quantum exchange effects (the single permutations 
of the ~i) and following standard analysis such as 
Zubarev (1974, p. 129), (8) reduces to 

l-[ (A-i3"~/n~!) e x p ( - / 3 U ) +  ~ ~ (+1)~. 
v = l  U = I  p.i ~ / x j  

xexp[-2~lxolZ/A2][l+O(/3)]}. (11) 

U is a modification (a smearing) of the original 
potential V due to quantum diffraction effects caused 
by the wave-like nature of the atoms and can be 
interpreted as a consequence of Heisenberg's uncer- 
tainty principle. The approximate form of U was 
found by Feynman & Hibbs (1965) and is generalized 
here to 

U ( X I , . - . , X n )  

=1-I(A2112)-1/2~ V ( x , + y l , . . . ,  x,  + y , )  
/x --cO 

x 1-I exp 2 2 (-127ryu/Au) I-I dy,.  (12) 
/.t /.t 

This effective potential includes most of the sig- 
nificant quantum effects (Doll, 1984). The first term 
of (11) is essentially a classical result while the second 
term gives the quantum exchange effect. The 
exponential argument is numerically equal to 
0.05 mxZT if m is expressed in atomic mass units, x 
in ~ngstr/Sms and T in kelvin. Carbon as a typical 
atom with a worst-case average separation of 1~ at 
liquid-nitrogen temperature (72K) gives e - 1 7 =  
3 x 10 -8. A more typical value is around 10 -3°. In any 
case, it will be assumed that/3 is set sufficiently small 
that the de Broglie wavelength is much smaller 
than the average atomic separation and hence the 
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second term can be ignored. [An acceptable com- 
promise for all atomic types except he l ium near  its 
l ambda  point (Larsen, Kilpatrick,  Lieb & Jordan,  
1965).] 

3.1. A s s u m p t i o n s  a b o u t  the  i n t e r a t o m i c  p o t e n t i a l  

A part icular  set of  atomic positions will be called 
a 'configurat ion '  and it will be assumed that the 
interaction energy for N atoms can be expressed as 

U =  ~ Uij -~- ~ A Uijk -~- . . . -I- A U ijk N . (13) 
i<j i<j<k 

The periodic boundary  condit ions imply that the pair  
potential  must have the symmetry  of the lattice. The 
second and higher terms in (13) occur because the 
atoms are not point  particles but can affect one 
another  via intermediaries  as shown in Fig. 1. In 
many  molecular  model l ing cases it is assumed that 
the first term dominates  the total energy, al though 
the second term may contribute up to 10% (Margenau 
& Kestner, 1969) while third- and higher-order  terms, 
at least in the case of l iquids,  contribute less than 1%. 
(These numbers  are known only indirectly.) Since it 
is via these potentials that s tereochemical  informat ion 
is being introduced,  their avai labil i ty and accuracy 
are an important  issue which will be discussed in § 10. 

3.2. The cluster  e x p a n s i o n  

Following Stell (1976), the classical probabi l i ty  
density distr ibution of N atoms can be expressed as 

N N N 

I-I  - 3  0 A~, p~(x~,) I-I ( l + f ~ )  I-I (1 + f ~ , o ) . . .  (14) 
/ x = l  / x < v  ~ <  v<oJ  

where f ~ , , , = e x p { - f l U ~ , ~ ( x ~ , , x , ~ ) } - I  etc. and 
0 p~,(x~,) = exp {-flA~,(x~,) +j~,(x~,)}. This product  can 

be expanded  in terms of  the f ,~ and can be represen- 
ted graphical ly  by assigning lines to the f~,~ and points 
to the p~, as shown in Appendix  II. A 'bond '  ( to /z )  
will be defined as the existence of one or more f~,k or 
f~,kl etc. in a part icular diagram and a 'vertex' will be 
defined as the actual atom /x. 

a concise way of demonstra t ing the necessary steps. 
There are many other papers  that confirm the argu- 
ments in this section. For example,  the detailed com- 
binatorial  analysis that underl ies  the d iagrammat ic  
proofs can be found in Stil lenger & Buff (1962) and 
also in the algebraic derivation of  a related gas mix- 
ture problem by Fuchs (1941). (Appendix  II gives an 
introduct ion to the cluster expansion terminology 
used in statistical mechanics) .* With expansion (14), 
the parti t ion function can be expressed as an infinite 
sum of graphs or, borrowing from the terminology 
of quan tum field theory, as an infinite sum of  many-  
leg density functions (see, for example,  Rivers, 1987). 
This is represented pictorially in Fig. 2. Some of  the 
graphs that make up the parti t ion funct ion are discon- 
nected (see Fig. 9 of  Appendix  II for an example)  
while the sum over the subset of  connected graphs is 
important  enough to be given the label W and is 
represented in Fig. 3. The act of  differentiating these 
diagrams with respect toj~, (x) is equivalent  to produc- 
ing a ' leg' of  type /z  at x and is represented in Fig. 4 
for the case of Z (see also Fig. 11 of Appendix  II). 
Differentiating Z in this way will result in some of  
its graphs being connected to this leg and some not. 
'Pul l ing '  on this leg will yield two components :  (i) a 

* See also the review by Stell (1976), Hansen & McDonald 
(1976), the umbral calculus approach of Roman (1979a, b), 
Mohanty (1982), Wilson & Rogers (1986); the cluster expansion 
theorems of Morita & Hiroike (1961) and the density functional 
methods based on the cluster expansion of de Dominicis (1962) 
and de Dominicis & Martin (1964). The cluster expansion is, in 
turn, a special case of a 'polymer expansion' (Glimm & Jaffe, 1981 ). 

Z 

n, legs of type 1. 

~ n :  legs of type 2. 

ill ~ II ~ i J l ~  = f t  I I 

Fig. 2. The partition function is the sum over all topologically 
inequivalent diagrams. The ball and stick representations are 
taken from Rivers (1987). 

4. Der iva t ion  o f  the  f ree -energy  re lat ion  

A diagrammat ic  derivation based on Feynman  
diagrams is followed because it is both a s imple and 

Fig. 1. If only nuclear configurations are of interest, as is the case 
for structure determination, then n-body effective potentials may 
be required to compensate for the neglected electron con- 
figurations. 

w O 
Fig. 3. The sum over all connected diagrams is represented as a 

hatched ball. 

oz ow 
= 

0ju(x) 0jr(x) 
• z 

Fig. 4. The diagrammatic equivalent of differentiation is the addi- 
tion of a 'leg'. 
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set of  graphs connected to the leg which is equivalent  
to the derivative of  W; (ii) a leg-less set of  connected 
graphs equivalent to Z. This is shown in Fig. 4 and 
the equivalent  differential equat ion shown beneath  
has the solution Z = exp [ W]. This relat ionship was 
first found by Mayer  (Mayer  & Mayer,  1940) but has 
been rediscovered many  times in different fields; for 
example,  in the quan tum many-body  problem it is 
sometimes called the Golds tone  theorem. It is impor- 
tant  to note here that the derivative O W/aj,(x) is 
equal to the number  density p~,(x) of atom type / . t  
for the conjugate distr ibution exp [ - / 3 ~ +  
~ j~(x)/Q~(x)] (see Bricogne, 1984). [Just differenti- 
ate log Z in (5).] 

Some of the vertices in the connected diagrams 
consti tuting 0 W/Oj,(x) are only connected to other 
vertices via the leg. That  is, removal of the leg splits 
a part icular  diagram into two or more disconnected 
sets. Hence the diagrams can be sorted into groups 
depending on the number  of  disconnected diagrams 
into which each one separates. Each vertex within 
such a disconnected diagram remains connected to 
the others as well as to x (see Fig. 5 and Fig. 12 in 
Appendix  II). The factorial terms make sure 
equivalent  graphs are not counted more than once 
and so it can be seen that the series may be expressed 
as an exponential .  Within this set there is a kernel 
that  is 'doubly  connected '  to the leg at x. That  is, 
there are at least two independent  paths that connect  
any a tom to x or the removal of any vertex (and its 
connections)  will not affect the connectivity of any 
of  the other vertices to x. The rest of the diagrams 
are 'hung off' the vertices of  this kernel (exclusive of  
x) via a single leg. This is shown in Fig. 6. In other 
words, diagrams can be ' teased out '  of  the set until 
only a doubly  connected set remains. These diagrams 
are singly connected diagrams with a single leg and 

expi  

tjh~ 
I Z 

q -  37., x - - -  

Fig. 5. The derivative of W can be rearranged to a sum over 
irreducibly connected diagrams. If the ball-and-stick representa- 
tions are taken as overall 'templates' for diagrams then any 
diagram that satisfies the left-hand-side template (i.e. is con- 
nected with a single leg) can be matched with one and only one 
of the templates on the fight-hand side. Conversely, any diagram 
that satisfies a template on the r.h.s, must exist on the l.h.s. 
because of the definition of W (i.e. it must be connected and 
have a single leg). 

hence are equivalent to a W/aj~(y) (compare  Fig. 6 
with Fig. 4). Fig. 6 shows clearly that it is a power 
series in the densities. This series, is labelled 
aF/ap,~(x) so that 

P,~(x)=A~3p°(x)exp[j,,(x)+aF/Op,~(x)] (15) 

which is called the Yvon equation (Yvon, 1935) by 
de Dominicis  (1962) (see also Haymet ,  1987). This 
is a crucial result which allows the source terms j,, to 
be expressed in terms of  the densities: 

j r ( x )  = log 3 [a,~p,,(x)/p°(x)J-ar/ap,,(x). (16) 

This inversion is essential to obtaining the entropy in 
terms of  the densities and is almost totally due to the 
assumption that only the average number  of  each 
atomic type is known. Moreover,  no constraint  is 
made on the certitude (or the lack thereof) with which 
these averages are specified. 

The free energy A[fl, OW/Oj~] is given by the 
Legendre transform of log Z [Baus (1987), see also 
(1) and (2)] 

M 
- f lA=-logZ-  ~ ~j~,(x) OlogZ/Oj~(x)dx 

pt=l V 

= .= ,  -~  0 log Z/Oj*(x) d[ j* (x ) ]  dx 

M 
- ~ I { p . ( x ) l o g [ A ~  p . (x ) /p° . (x ) ]  

~.=1 V 

- p, (x)OF/Op, (x)} dx. (17) 

The first term can be expressed using (16) as 

~v ( ~ "Ix'  P* (x )d{ l °g  [A3 P*(x)/p°(x)] 
pt=l --oo 

-OF/cgp*(x)}) dx. (18) 

The first term of (18) gives the first part  of  (3) and 
the second can be combined with the last term of 

t ~ p ~ ,  

= . - ; - -  + 2 2  
t 

t 

Fig. 6. The irreducibly connected diagrams can be rearranged as 
a sum of connected diagrams with a doubly irreducible kernel 
(shown cross-hatched). 
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(17) to give 

~v E -p*(x )  d[Or/op*(x)] 
~ = 1  

+ po(x)OF/Op~,(x)} dx. (19) 

The inner integral can be replaced with an integration 
by parts 

d[p~(x)Or/Op~,(x)]-[or/op~(x)] dp~,(x). (20) 

Some terms cancel leaving 

M jr, Ix)  J E ar/ap*(x) d[p*(x)]= r(/~). (21) 
V /x= l  --co 

From this, the free-energy expression (3) follows 
directly. Because the Lagrange multipliers (effectively 
the chemical potentials) now only appear implicitly 
within the pg they can be set to zero without altering 
the result (3) and rendering O W/Oj~ equal to the 
atomic density described by the Hamiltonian ~. 

5. Expressing the free energy in terms of structure 
factors 

The free energy (3) is expressed in terms of the 
densities of each of the contributing atomic types 
but it can equally well be expressed in terms of 
their respective Fourier coefficients U~ giving 
-flA[U~,,. . . ,  U~]. Unfortunately, these individual 
values are not known (or measured) and only their 
sum, 

N 

Y~ f .  (h)U~ = F,, (22) 
/a.=l 

weighted by their individual scattering factors f~(h), 
is of interest in crystallography. The Ug will be termed 
atomic structure factors because they are formally 
different from (but numerically similar to; hence the 
notation) the unitary structure factors U,. Equation 
(22) can be expressed in the matrix form fU = F for 
which the 'inverse' is required. Because the matrix f 
is not square it is necessary to use a generalized 
inverse, f#, of which there are two choices: (1) if 
f#___ (frf)- , f  then fU = F ~ U = f#F (this does not 
imply that fU = F). (2) If f#-- f r ( f f r ) - I  then U = 
f#F ~ f U = F  (this does not imply that U=f#F) .  
Because the U~'s must be consistent with the Fh'S, it 
is the latter choice that is needed. This gives U~ = 
f~(h)Fh/O" 2 which can be substituted into (3) to give 
the free energy as a function of the structure factors. 

The problem of determining unknowns that are not 
uniquely specified by the data is best approached via 
the principle of maximum entropy (Levine, 1980). If 
the summations (22) are interpreted as expectation 
values from some underlying statistical model then a 
ME probability density P(U) for the U~ can be calcu- 

lated. From this, inversion can be effected using 
U~P(U) dU which is a function of the constraints 

Fh via the Lagrange multipliers (as discussed in the 
Introduction). For example, if the U~* are taken as 
random variables distributed within the circle of 
radius u~, then the log of the partition function must 
satisfy 01ogZ(Ogh)/0ol h =[Fh[ where a h is the 
Lagrange multiplier of Fh. This equation has the form 

N 

--2(S/ah)+ Y~ u~f,(h) 
/*=I  

x Io(u~f~,(h)ah)/Ii(u~f~,(h)ah)= Fh. (23) 

If Fh is small (implying that a is also small) then ah 
can be determined as a function of Fh. The atomic 
structure factors are independently distributed so that 
the partition function is separable (Z=II,~Z~.) and 
U~ can be determined from 0 log Z,~/Oah. This results 
in a value equivalent to that found from the general- 
ized inverse described above. If F h --> ~ u"f, is large 
then ah is also large and the atomic structure factor 
is given by 

U~ = Fh/ Nf~(h) [ l + u~ ~, (24) 

where ~f, = f~ - f,. 
Clearly, the drawback with the above approach is 

that the j.p.d, for the atomic structure factors was 
based on an arbitrary statistical assumption about the 
distribution of the U ~'s. This problem can be avoided 
by noting that since the entropy is equal to the 
expectation value of the log of the probability density, 
the function exp ( - f lA) /Z  formally defines a proba- 
bility distribution. With this in mind, let P(U ~) be 
the j.p.d, between the individual atomic structure 
factors U~ with the corresponding characteristic func- 
tion Z[f] [which is given by (5) substituting j~ as 
the Fourier transform of j~(x)]. Similarly, let P(F) 
denote the j.p.d, between the actual structure factors 
Fh. Then, via the change-of-variables theorem 
(Gillespie, 1983), it is easy to show that the charac- 
teristic function C[A] of/6(~) is equal to Z[j] under 
the condition that j~ =f~,(h)hh. The inverse Laplace 
transform gives the j.p.d, between structure factors, 

r+ioo 

P(F) = ~ exp [ W(f~,A) - AF] dA (25) 
~---ioo 

which can be evaluated at a saddle point by solving 
O W/OA h =-Fh for Ah = rh. Integration of (25) at the 
saddle point gives 

log P(F) - - - f lAt (F)  

= -flA(F) 

+½log det {oz[-flA(F)]/OFhOFk} (26) 

where the U~ in (3) have been substituted by U~-= 
O W/Oj~[j~=j,,(h)A, and are indirectly functions of the 
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Fh by the ,~.hS. This is possible in principle because 
W is a known function of the connected cluster 
integrals but it is unlikely that an analytic function, 
f, can be found that gives ~h =f (F)  in terms of the 
structure factors. On the other hand, ifj~, (x) is small, 
then U~' ocj~'(h # 0) which gives Ah = Fh/tr2, the same 
value as predicted from the generalized inverse. Any 
value of Ah can be used, although the saddle-point 
value gives the most accurate low-order expansion 
(Daniels, 1954). It is important to note that (26) is 
also the relation that connects the free energy of the 
canonical distribution to that of the grand canonical 
distribution (Fowler & Guggenheim, 1939). By con- 
struction, the left-hand side gives the log of the j.p.d. 
between structure factors for a fixed finite number of 
atoms as specified by the constraints (22) (see also 
Appendix I). Hence the minimization of At(F) with 
respect to the phases can be considered a direct 
method of phase determination if interatomic poten- 
tials can be supplied ab initio from general chemical 
knowledge. 

The generalized inverse permits a simple extension 
to incorporate multiple isomorphous replacement 
(MIR) data sets. M different isomorphous structures 
with reflections G~, i-- 1 , . . . ,  M, imply a set of rela- 
tions of the form 

N 
i /~ i g.(h)Uh =Ch.  (27) 

/ z = l  

The meaning of the term isomorphous is clearly 
defined by forcing the U~' to be identical in all of the 

! structures (only the g~, distinguish between struc- 
tures). Application of the generalized inverse gives 

U~ '= . .  g~.(h) ' J i g~(h)g~(h) Gh. (28) 
l , J  

This inversion, when substituted into (3), gives the 
j.p.d, between the structure factors of the isomorphic 
structures. The idea can be applied to the saddle-point 
integration (25) using j~ ~ i  i i g~,(h)hh, but now (26) 
cannot be considered the log of the free energy of 
any particular structure. Symmetry can also be 
accommodated by substituting 

G 

p~,(x) = G-~E p~,(Sgx) (29) 
g 

for each atom or, if it is a non-crystallographic sym- 
metry, for each of the participating atoms. It is not 
hard to show that this yields similar relationships to 
those used in molecular replacement methods (Main 
& Rossmann, 1966). 

6. Convergence of the excess free-energy summation 

If the f~,~ are all short range, the integrals of F are 
effectively volume independent and hence can be 
expanded rigorously as powers of Ne/kT,  where N 

is the average number of atoms in the unit cell and 
e is the average energy per atom. The Mayer cluster 
expansion on which the derivation of (3) is based has 
been shown, for the simple virial expansion, to con- 
verge after seven terms or so for densities approaching 
half the crystallization density of simple close-packed 
lattices (see Ree & Hoover, 1967). Also F can be 
expanded about any preferred reference density as 

oo 

r =  E Y'. [1-I n,,!]-'(:r/l-Iap"~) 
n = o  {6 }  

0 nta " x I-I [p~(x) -  p~,] (30) 
/.t 

thereby improving the chances of fast convergence. 
The derivatives of F form part of the direct-correla- 
tion functions and can be related to the actual correla- 
tion functions by generalized Ornstein-Zernike rela- 
tions (Blawzdziewicz, Cichocki & Holyst, 1989). 
Expansions of F to a third order have been success- 
fully applied to computational crystallization prob- 
lems by Haymet & Oxtoby (1981 ) and Bagchi, Cerjan, 
Mohanty & Rice (1984) and thus it would seem that 
the excess free-energy expansion (4) is unlikely to be 
divergent or otherwise pathological. 

It could be asked if the free energy (26) predicts 
any kind of phase change as the temperature is 
lowered. Such a change would be indicated by a 
divergence in the hessian of log Z and, due to the 
Ornstein-Zernike equation (see § 2), would mean that 
some eigenvalues of the hessian of A must vanish. In 
fact the free energy of the grand canonical [the first 
term of (26)] remains finite and at the critical points 
becomes insensitive to wild fluctuations in the density 
[as might be expected (Fisher & Jasnow, 1975)]. 
Indeed, the direct-correlation functions remain short 
ranged even at critical points (Hansen & McDonald, 
1976) roughly equal to the range of the interatomic 
forces. On the other hand, the second term of (26) 
does diverge, reflecting the well known fact that the 
canonical and grand canonical partition functions 
cannot be equivalenced at critical points (Zubarev, 
1974). 

Since it is envisaged that the free energy (26) will 
be used as a weighting function to determine the most 
likely phases for a structure, the temperature 
becomes, computationally, no more than a variable 
parameter weighting the effects of interatomic poten- 
tials. Thus, in practice, it may be possible to set the 
temperature high enough to ensure quick convergence 
of F but still permit the potentials to be effective in 
the phasing process. 

7. Hard-core potential 

It is not yet clear how the energy interaction terms 
appearing in the excess free energy alter the phase 
indications of the reflections. In this section the effect 
of a simple hard-core potential will be investigated. 
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Assuming that all atoms have the same radius, such 
a potential f~j has the form 

f ( x , y ) = { - ~  otherwise.if a I x - y ± l l < 0 .  (31) 

Because of the infinite core repulsion this is a tem- 
perature-independent potential. The function (31) is 
easily expressed as a Fourier series 

f (x ,  y) = E Vh exp [27rh - ( x - y )  ] . (32) 
h 

Approximation of the step function as a Gaussian of 
width e=20 .  gives V h = - - e e x p ( e 2 / 3 h  2) and e =  
/"atom/V is the ratio of the volume of a single atom 
to the volume of the unit cell. For e small and with 
the configurational entropy term approximated by a 
simple polynomial, the triplet term can be calculated 
as 

0.23/2[0- 3 -- KE20"3]EhEkE_h_  k (33)  
h,k 

where K is a positive constant <1, whose exact value 
depends on the form of Vh. Notice that 0-3-" N -I/2 
but that o"1-~ N I/2. Because, as pointed out in § 3, 
crystal densities do not vary by more than an order 
of magnitude, e -- N -1 so that e2o "3 ~ N -~/2 has the 
same dependence upon the number of atoms as 0.3. 
Much has been said about the lack of any physical 
justification for permitting the atoms to be uniformly 
distributed about the unit cell without regard to their 
proximity to one another (Wilson, 1981), but as 
Goedkoop, MacGillavry & Pepinsky (1951) have 
shown, an isotropic exclusion zone around each atom 
(a result of hard-core repulsion) has no phasing power 
because it already exists in the Patterson map. On 
the other hand, Rius & Miravitlles (1991) have shown 
that if significant areas in the Patterson map are void 
of density then some phase information can be 
extracted. In this case one can infer an effective repul- 
sion potential that is not necessarily isotropic and for 
which e is not necessarily small. As can be seen from 
(33) the hard-core potential affects the triplets by 
reducing their weights by a constant amount. From 
this result it is possible to say that, although the 
direct-method procedures are based on a random- 
atom assumption, to a first approximation there is no 
practical difference between this and a phase pro- 
cedure based on hard-core repulsion. 

8. Extensions 

If consideration is given to the proof in § 4, it can be 
seen that there is no need to interpret the parameters 
x in (3~ as atomic positions. It is possible to extend 
x-->x, 0 to include other degrees of freedom such 

as action angle variables between fragments. The 
densities now have to be interpreted in terms of this 
larger space and the interatomic potentials f,~ become 
correspondingly more complicated. Unfortunately it 
is not clear how to express p,(x,  0) in terms of the 
scattering factor. On the other hand, Bayes's theorem 
can be applied with the probability distribution (26) 
to get P(F,O)cx:.P(FIO)Pprio,.(O ). In this case the 
second term of (26) is crucial because it provides 
normalization for the probability. This extra 'power' 
of the probability distribution over simple entropy 
maximization (or in this case, free-energy minimiza- 
tion) has already been noted in the crystallographic 
area by Bricogne (1988). 

9. Simulated annealing 

The expression of the free energy as a j.p.d, between 
structure factors raises the question of the applica- 
bility of simulated annealing techniques to phase 
solution. Original attempts by Semenovskaya, 
Khachaturyan & Khachaturyan (1981, 1985) to deter- 
mine crystal structures via statistical mechanics argu- 
ments based on an 'R-factor'  free energy have not 
been shown to be advantageous. Recently, Sheldrick 
(1990) has reported a practical application of phase 
annealing to real structure-factor data. Unfortunately 
it is not possible to relate his practical approach to 
the free-energy relations (3) or (26) even though 
simulated annealing techniques were originally 
developed for free-energy minimizations in 'rugged 
landscapes'. The major difference is that (3) gives the 
standard invariant relations in the high-temperature 
limit whereas Sheldrick's B parameter must be 
lowered to regain them. Further, the phase depen- 
dence of the configurational part of the free energy 
is temperature independent. 

10. Discussion 

The requirement that stereochemical information be 
supplied in the form of potential functions (13) is 
possibly too exigent, given the current state of 
chemical knowledge. For example, in accurate 
molecular-dynamics calculations of local order in 
silicon, Mistriotis, Flytzanis & Farantos (1989) had 
to employ four-body potential functions. These 
results were only applicable to clusters of more than 
six atoms (where 7r bonding is insignificant due to 
the large degree of coordination). Others have used 
three-body potentials based on two-body sums 
(Biswas & Hamann, 1985) or a pair potential depen- 
dent upon the chemical environment (Tersoff, 1986). 
This last method is used in the application of 
molecular dynamics to crystallographic refinement 
where the known environment surrounding each atom 
permits atomic interactions to be separated into 



206 MINIMIZING FREE ENERGY 

bonded and non-bonded types (Briinger, Kuriyan & 
Karplus, 1987). One can incorporate this idea into 
the free energy (3) by making the potentials depen- 
dent upon the densities, i.e. V(p , ,  pv), but the compli- 
cation this entails may introduce more error than it 
eliminates. 

It would seem that the only unambiguous informa- 
tion available is the hard-core repulsion potential 
between atoms which Goedkoop, MacGillavry & 
Pepinsky (1951) have already shown to hold no phase 
information. Equation (33) shows, however, that the 
weights of the invariants are different and this should 
serve as a caution to the efforts being launched to 
calculate triplet weights 'accurately' from the random- 
atom assumption (Shmueli, Rabinovich & Weiss, 
1989). 

In some cases it is not necessary to work at the 
atomic level. The scattering factors in (22) could 
equally well be those of groups [or the 'globs' of 
Harker (1953)]. This approach has been used by 
Rabinovich & Shakked (1984) to solve some DNA 
structures. They effectively used a simple hard-core 
potential between DNA fragments to exclude certain 
configurations from consideration. This is exactly the 
idea behind the derivation of the free-energy distribu- 
tion. Rabinovich & Shakked have reported some 
success with their brute-force search through con- 
figuration space. This method has also been used by 
Major, Guatheret, Lapalme, Jolicoeur, Fillion & 
Cedergren (1990), but without the aid of reflection 
intensity information. Their potentials (simple topo- 
logical constraints) are extremely crude due to the 
large grid spacings employed but have aided in a 
successful, if limited, search for RNA loops. With 
(26) this search has already been completed via the 
integration over configurations (7) and only the 
average effect on the structure factors remains. 
Moreover, it is not necessary to restrict the potential 
functions to the chemical domain. For example, 
knowledge of non-crystallographic symmetry, S, 
implies the potential V~v(x,, x,) = 6(x, - S[x,]). The 
recycling of fragments found in direct-method maps 
to improve invariant phase relationships (Main, 1976) 
is now a standard part of crystallographic practice. 
The combination of fragments with simple exclusion 
potentials and the free energy (26) into a more general 
phasing scheme is therefore a promising possibility. 

The generalization of the j.p.d, between structure 
factors has provided insight into requirements for 
improving on the random-atom approximation. These 
requirements involve a knowledge of stereochemistry 
in the form of potentials and, maybe more impor- 
tantly, a clearer understanding of what level to con- 
sider 'atomic'. 
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" A P P E N D I X  I 

(i) Corrections to the j.p.d. 

It is possible to extend the standard methods used 
to derive j.p.d.s for uniform atomic distributions just 
as the free energy was extended from the configura- 
tional entropy; that is, via the potential functions. By 
taking the atomic probability density p as propor- 
tional to (14) and expanding to lowest order in f~,~, 
the distribution 

(A1) 

is obtained. Expressing the interaction potentials, f, 
in terms of their Fourier transform as was done in 
(32) and assuming that the pO are uniform (an 
assumption that can be dropped), one can use the 
technique of Castleden (1987, 1988) to derive the 
j.p.d, between structure factors: 

P(F)=  Po(F)+~ ~ IV~'"I Y. I-I G(n,f, Fh) 
h /.t<t, {n} h 

(A2) 

where Po is the ordinary j.p.d, and the notation is 
taken from Castleden (1988). The set of integers {n} 
satisfies 

{nah[~ k nakk-l-h = 0} if a =  tz,~' 

and 

{n~h]~ k n~kk=0} otherwise. (A3) 

The combinatorial problems encountered by Peschar 
& Schenk (1986) and Castleden (1987) in calculating 
a sufficient number of terms to ensure the convergence 
of the series Po(F) are, here, even more acute and 
make (A2) far more difficult to compute than (26). 
However, the derivation shows that the free energy 
and the j.p.d, must be similar as they both stem from 
the same prior atomic probability distribution and 
that the coefficients calculated from (A2) (and the 
higher-order terms) should, for large N, be equal to 
those calculated from (26). 

(ii) Atomic correlations with the central limit theorem 

Heinerman, Krabbendam & Kroon (1977) have 
used the central limit theorem (CLT) to derive the 
j.p.d, of a triplet invariant. The CLT also applies when 
correlation between random variables exists (Serfling, 
1968) although the correlation length has to remain 
fnite. With this restriction, an interatomic probability 
distribution p ( r / - r j )  can be defined with Fourier 
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coefficients G~j(h) --- (exp {27rib • (r~ - rj)})p. With the 
terminology of Heinerman et al., it can be shown that 
the triplet invariant q'h+ 0k+ ~'-h-k equals q~ where 

kexp(iq~)=20--~31fh Fh2F_h,_h~lA. (A4) 

Assuming that the scattering fac tors f  are independent 
of h, A is given by 

0"3 "{- [ O"10-2 -- 0-3][  G ( h , )  4- G ( h 2 )  4- G ( - h ]  - h2)] 

+ [ 0-~ - 3 o'~ o'2 + 20-3] G (h~) G(h2). (A5) 

Because the Gs are real-valued, the only possible 
values for the triplet sum q~ are 0 or ~. This is in 
agreement with (33). 

A P P E N D I X  II 

The use of diagrams 

After careful definition of a few terms, the argu- 
ments of §4 and the proof of (16) can be made 
rigorous with the aid of theorems derived by Morita 
& Hiroike (1961). These theorems are reproduced in 
Hansen & McDonald (1976, Appendix A) and are 
hereafter referred to as lemmas I, II and III. They 
apply only to 'simple' diagrams; that is, no third- or 
higher-order interactions, and a single atomic type 
(see Fig. 7), but it is not diffficult to drop these restric- 
tions and generalize the results. 

Ignoring the product over densities, (14) can be 
written in the form I-Ik(14-t~k) where 6s=fy etc. 
Expanding the product produces sums over terms of 
the form 6~6j...6k with each set of indices [ij. . .  k] 

distinct. This means that no permutations can trans- 
form it into a set of indices for another member of 
the sum. Each product, when integrated, has associ- 
ated with it a distinct labelled diagram (see Fig. 8). 
Since Z is the sum over all possible ensembles of 
atoms, it follows that Z is the sum over all topologi- 
cally distinct labelled diagrams. Here, topologically 
distinct means that no deformation, rotation, inver- 
sion etc. of the diagrams which does not break any 
'bonds '  can superimpose one distinct diagram onto 
another. Labelled diagrams which share the same 
topology when their labels are ignored can be grouped 
together to form an unlabelled diagram (see Figs. 8 
and 9). Conversely, for any unlabelled diagram, all 
its distinct labelled equivalents can be matched with 
a product of deltas. (The proof can be made by 
construction. Note, in particular, the form of the 
fourth-order bond in Fig. 7; any permutation of labels 
on like atoms leaves it invariant. This must also be 
true of all higher-order bonds in order to match the 
symmetry of the potential function they represent.) 

Let z c{Z}. Because this diagram can be con- 
structed from a product, 

N 
z =  1-I [w~"], (A6) 

i=1 

where w i e { W } V i  (see Fig. 10) and where ni are 
certain integers, then by lemma I, Z = exp [ W]. 

Since differentiation of a closed diagram produces 
a sum over all distinct diagrams with one open vertex 
(lemma II, see Figs. 11 and 12), lemma I can be used 

Vertices 

m A • . closed 

[[[] A O "~ open 

~ (~ atom labels 

Bonds 

r- 7 . /"]  i^~, ',^¢ 
L J k . ~  ~_.a • • 

f , .  #~. f.. 

F T M  ) 

f f eUCX)e~(Y'et'(=')emZ:Jf..(x, y)f..(y, z:)f..(z,, zt,)/...(y, z,. z, Jdxtby = 
t. v 

Fig. 8. Each unlabelled diagram is shorthand for a particular set 
of  integrals. Each topologically distinct way of labelling the 
diagram (permuting only between vertices of the same type) 
corresponds one to one with a particular integral. For example, 
setting -/3)t~,(x) to zero gives the above result. 

F 7  
q, 4 
I \ 

I \ 
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/-4 ~ 7  
k .~)" ------ L-I 
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Fig 7. Diagrams are made up of  vertices and bonds. Vertices may 
be open or closed. Closed vertices may or may not be labelled 
but open vertices are always labelled. Bonds represent the inter- 
atomic potentials. Each 'shape' represents an atomic type. 

Fig. 9. The partition function is the sum over all topologically 
distinct unlabelled diagrams. The set of  these diagrams is 
denoted by {Z} and the sum by Z, e.g. z e { Z } = t h e  above 
formula. 
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to prove that a W/Oj. (r) = exp [ G .  (r) ] where G~, (r) 
is the sum over the set of  diagrams with no open 
articulation vertices (Fig. 13). This is because if w.(r) 
is an element of  the set {a w/aj~, (r)} then it can be 

' i  
Fig. 10. An element of the set { W}. From the set {Z} all connected 

diagrams are selected. This set is denoted by { W} and the sum 
of its elements by W. 

Fig. 11. Any element w e { W} can be differentiated. The diagram- 
matic equivalent of differentiation is given by lemma II: the 
derivative of a closed diagram with respect to some Lagrange 
multiplier j~,(r) is equal to the function f(r)  represented by the 
sum over all topologically distinct diagrams obtained by 
replacing a closed/x vertex by an open/x vertex, all multiplied 
by /3. For example, let we {W} so that the first formula is 
obtained, but not the lower diagram since this is topologically 
identical to the first diagram. 

, .  - - -  e - - . +  - ; . .  
' ,  , .><:" i 

Fig. 12. All elements of the set {W} can be differentiated [for 
example and w.l.o.g, by j * (r)]. This set of diagrams is denoted 
by {a W / a j .  (r)}. The sets { W} and {a /a j .  (r)} have diagrams 
which contain 'articulation vertices'. These are vertices which, 
if removed, result in two or more disconnected diagrams. 

\ / 
\ / 
\ / 

I 

Fig. 13. An element of the set {G* (r)}. All the diagrams in 
{a W/aj • (r)} that have no open articulation vertices form a set. 

Fig. 14. An element ofthe set {F}. The set {F} is the set of diagrams 
in { W} with no articulation points. 

cons t ruc ted  f rom a p roduc t  

w. (r) = l-I ' " [g~(r) ]  ,, (A7) 
i=1 

where  g~(r) {G.(r)}  Vi. 
The final step giving the expansion in terms of  

densities is a direct result of  (a simple generalization 
of) lemma III. An element of the set F is shown in 
Fig. 14. 
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Abstract 

The largest likely R factor is useful for evaluating 
the significance of R factors obtained in structure 
determinations. Numerical expressions have been 
derived previously for calculating largest likely R 
factors in fiber diffraction analyses. Analytical 
approximations to largest likely R factors ( ~ )  in 
fiber diffraction are derived here that show the depen- 
dence on resolution (t~), helix symmetry (uo) and mol- 
ecular radius (~). The simplest approximation is 

~ ( u / ~ )  ~/2 which represents the overall behavior 
of R factors reasonably well. More accurate approxi- 
mations are also derived. These are applied to various 
structures and the dependence on different structural 
parameters is examined. These results provide insight 
into the behavior of R factors in fiber diffraction and 
may be useful in further analysis. 

0108-7673/92/020209-07503.00 

I. Introduction 

The significance of an R factor obtained in a structure 
determination can be assessed by comparison with 
the largest likely R factor; that for a structure uncorre- 
lated with the correct structure (Wilson, 1950). R 
factors in fiber diffraction are generally smaller than 
in single-crystal analyses because the diffraction pat- 
tern is cylindrically averaged, and the largest likely 
R factor in fiber diffraction has been studied by 
Stubbs (1989) and Millane (1989a, b, 1990). The 
largest likely R factor depends on the number of 
overlapping complex Fourier-Bessel structure factors 
at different positions in reciprocal space, and there- 
fore on the diameter and symmetry of the diffracting 
particle and the maximum resolution of the diffrac- 
tion data. The largest likely R factor in fiber diffrac- 
tion, while easily calculated, is a rather complicated 
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